Properties of "expected value "¶
Just in case, before getting into properties of expected value we should be on the same page on what the expected value is .
Let's say that we have random variable $x$, and $f(x)$ as a function of $x$. Expected value of random variable (continuous) is presented as below.
$$ < f(x)> _{p(x)} = \int f(x)p(x)dx $$
1. Linearity¶
When it comes linearity, you can derive as below with comparative ease :) $$\begin{eqnarray}<f(x) + g(x)>_{p(x)} &=& \int \{f(x)+g(x)\}p(x)dx\\ &=& \int f(x)p(x)dx + \int g(x)p(x)dx\\ &=& <f(x)>_{p(x)} + <g(x)>_{p(x)}\end{eqnarray}$$ $$\begin{eqnarray}<cf(x)>_{p(x)} &=& \int cf(x)p(x)dx\\ &=& c\int f(x)p(x)dx\\ &=& c<f(x)>\ \ \ where \ c \in \mathcal{R} \\ \end{eqnarray}$$2. Multiple random variable 1¶
If there are maultiple random variable ($z_1, z_2, z_3$), expected value can be calculated as below. $$\begin{eqnarray} <f(z_1, z_2, z_3)>_{p(z_1)p(z_2)p(z_3)} &=& <\int p(z_1)f(z_1, z_2, z_3)dz_1>_{p(z_2)p(z_3)}\\ &=&<(f\ of\ z_2\ and\ z_3) >_{p(z_2)p(z_3)}\\ &=&<\int p(z_2)(f\ of\ z_2\ and\ z_3)dz_2 >_{p(z_3)}\\ &=&<(f\ of\ z_3) >_{p(z_3)}\\ &=& \int p(z_3)(f\ of\ z_3)dz_3\\ &=& Final\ expected\ value \end{eqnarray}$$
3. Multiple random variable 2¶
This is a pattern where $f$ is a function of only $z_1$, whereas ramdom variables are $z_1,z_2,z_3$, $$\begin{eqnarray} <f(z_1)>_{p(z_1)p(z_2)p(z_3)} &=& <\int p(z_2)f(z_1)dz_2>_{p(z_1)p(z_3)}\\ &=&<f(z_1)\int p(z_2)dz_2>_{p(z_1)p(z_3)}\\ &=&<f(z_1)>_{p(z_1)p(z_3)}\\ &=&<\int p(z_3)f(z_1)dz_3>_{p(z_1)}\\ &=&<f(z_1)\int p(z_3)dz_3>_{p(z_1)}\\ &=& <f(z_1)>_{p(z_1)}\\ \end{eqnarray}$$